ทบทวน Calculus 3 สมการแบร์นูลลี (BERNOULLI’S EQUATION)

การทำโจทย์ สมการแบร์นูลลี (BERNOULLI’S EQUATION)

YouTube Preview Image

ในหัวข้อนี้ เราจะทำการศึกษาถึงสมการบางประเภทที่มีใช้งานอยู่แต่ไม่สามารถระบุได้ว่าเป็นสมการอนุพันธ์อันดับ1ประเภทใด หรือชนิดใดชนิดหนึ่งตามที่เราเคยศึกษามาแต่เราจะมีวิธีการหาคำตอบชองสมการดังกล่าวได้โดยใช้วิธีที่กล่าวมาข้างต้น พิจารณาสมการต่อไปนี้

เรียกว่า สมการแบร์นูลลี (อังกฤษ: Bernoulli equation) เมื่อ {\displaystyle n\neq 1}{\displaystyle n\neq 1} ,{\displaystyle 0}{\displaystyle 0} ซึ่งสมการนี้ตั้งชื่อตาม ยาคอบ แบร์นูลลี (Jakob Bernoulli) ผู้ซึ่งนำเสนอสมการรูปแบบนี้ไว้ในปี ค.ศ. 1695 (Bernoulli 1695) สมการแบร์นูลลี นั้นมีความน่าสนใจเพราะสมการเชิงอนุพันธ์ไม่เชิงเส้นที่ (nonlinear differential equations) มีผลตอบแม่นตรง (exact solution)

ขั้นตอนที่ 1  จัดรูป dy ส่วน dx + P(xy) = Q(xy) กำลัง n จัดให้ได้รูปแบบนี้ก่อน
ขั้นตอนที่ 2 นำ y คูณตลอดทั้งสมการ
ขั้นตอนที่ 3 แทนค่า v = y กำลัง 1-n
                         dv ส่วน dx  = d ( y กำลัง 1 -n ) dy ส่วน dx
                        > dy ส่วน dx   =  P(xv) = Q(xv)
ขั้นตอนที่ 4 แก้สมการ
                        v = 1 ส่วน e กำลังอินทิเกรต P(x)dx  คูณกับ e กำลังอินทิเกรต  P(x)dx คูณกับ Q(x) dx + C
ขั้นตอนที่ 5 แทน v = y กำลัง 1 -n ลงในสมการได้เลย General Solution
                   ถ้ามี Intial  condition  หา Patiquara Solution

Nattakan Boonpech on sabfacebook
Nattakan Boonpech
at GlurGeek.Com
ชื่อณัฐกานต์ บุญเพชร ศึกษาอยู่ที่มหาวิทยาลัย ม.กรุงเทพ ชั้นปีที่ 2 คณะวิศวกรรมศาสตร์ ภาควิชาอิเล็กทรอนิกส์ ชอบเกี่ยวกับวงจรอิเล็กทรอนิกส์ งานอดิเรกเล่นกีฬา ศึกษาเกี่ยวกับโทรศัพท์ อยากทำงานเป็นวิศวกรรมอิเล็กทรอนิกส์การบิน

Leave a Reply

Copyright © 2021 GlurGeek.Com. All Rights Reserved.